If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+55x-750=0
a = 1; b = 55; c = -750;
Δ = b2-4ac
Δ = 552-4·1·(-750)
Δ = 6025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6025}=\sqrt{25*241}=\sqrt{25}*\sqrt{241}=5\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(55)-5\sqrt{241}}{2*1}=\frac{-55-5\sqrt{241}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(55)+5\sqrt{241}}{2*1}=\frac{-55+5\sqrt{241}}{2} $
| (6x)+(3x+39)=180 | | 10+5y=1+8y | | 3/4x−4=−7+1/3x | | (3x+20)+(2x+40)=180 | | x²-55x-750=0 | | x²-55x=750 | | (5m/8)+3/4=9/2 | | 5m/8+.75=9/2 | | -5(-x-4)-3x-5=3 | | 6-3x+5x=3+4x | | -2(3x-4)-x-3=3333 | | n2+4=175 | | 4/19(3x+4-8x)=6(8-⅚x) | | y+(-14)=38 | | 15+36=c | | -11-x/5=-17 | | 2x-19-11x=4+16x | | 1/4+(4+x)=4/3 | | 10x=+4 | | 6=a(0-5)(0+3) | | 3x+1=4×-6 | | 10x-35=8x+25 | | 21x+35=20x-30 | | (2x–3)^2=-4x^2-10x+24 | | 5x–8=(6x+9) | | -4v+31=3(7-3v) | | 3+2(7-2n)=-(1+2) | | -6n-6(6n-3)=-19-5n | | -1-2(2k+3)=2(4K-8)+1 | | q/6+13=16 | | -6n-6(6n-3)=19-5n | | 0.05x^2-4x-38=0 |